Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

نویسندگان

  • Biji Shibulal
  • Saif N. Al-Bahry
  • Yahya M. Al-Wahaibi
  • Abdulkader E. Elshafie
  • Ali S. Al-Bemani
  • Sanket J. Joshi
چکیده

Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions

Microbial Enhanced Oil Recovery (MEOR) is a potential technology for residual heavy oil recovery. Many heavy oil fields in Oman and elsewhere have difficulty in crude oil recovery because it is expensive due to its high viscosity. Indigenous microbes are capable of improving the fluidity of heavy oil, by changing its high viscosity and producing lighter oil fractions. Many spore-forming bacteri...

متن کامل

A Pore Scale Evaluation of Produced Biosurfactants for Ex-situ Enhanced Oil Recovery

Microbial enhanced oil recovery (MEOR) is an economical method used to improve the oil recovery from reservoirs. In the MEOR techniques, by applying different microorganisms, a variety of products such as bioacid, biogas, biosurfactant, and biopolymer are generated, among which biosurfactant, one of the important metabolites, is produced by bacteria. It is worthy to note that bacteria are suita...

متن کامل

Microbial Enhanced Oil Recovery, Wettability Alteration and Interfacial Tension Reduction by an Efficient Bacterial Consortium, ERCPPI-2

In the present study, the potential of a bacterial consortium of Enterobacter cloacae and Pseudomonas sp. (ERCPPI-2) for microbial enhanced oil recovery was investigated. Various mechanisms of enhanced oil recovery (EOR) as a result of using ERCPPI-2 and its metabolic products were studied in detail. The obtained results showed that under simulated reservoir ...

متن کامل

Bacteria in Crude Oil Survived Autoclaving and Stimulated Differentially by Exogenous Bacteria

Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR). However, it is not entirely clear if "endogenous" bacteria (e.g., spores) in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of ...

متن کامل

Microbial Enhanced Oil Recovery Using Biosurfactant Produced by Alcaligenes faecalis

A bacterial strain (designated as Alcaligenes sp. MS-103) isolated from oil sample of the Aghajari oilfield in the south of Iran, was able to produce an effective extracellular lipopolysaccharide biosurfactant (1.2±0.05 g/l) on molasses as a sole carbon source. The highest surface tension reduction to level 20 mN/m was achieved by biosurfactant produced by cells grown on molasses under optimum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014